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Abstract: A first principles calculation of cluster exchange coupling constants (i.e., J1,/, in the total spin Hamiltonian //cx = - 2 
2ul0m pairs U^oAS0-S/,) is attempted within the framework of the standard SCF-Xa-SW method. The results for the triply 
Cl bridged dimer Mo2Cl9-'- in the salts Cs3Mo2CI9 (d(Mo-Mo) = 2.655 A) and K3Mo2Cl9 (rf(Mo-Mo) = 2.53 A) are J„h-
(calcd) = -355 and -1268 cm-1, respectively. The corresponding experimental values are —421 and -556 cm""1. From the 
calculated electronic structure of Mo2Cl9

3-, the exchange coupling mechanism is seen to be purely direct metal-metal interac­
tion with no superexchange. The presence of Mo-Mo bonding which resides in a predominantly Mo-bridging Cl orbital, and 
is quite distinct from the coupling of the magnetic electrons, is also revealed by the calculations. It is concluded that, while 
there is much room for improvement, the standard SCF-Xa-SW method is useful in studying exchange coupling in clusters. 

Introduction 

Exchange coupling between metal atoms in single-ion orbital 
singlet ground states has been extensively investigated in 
cluster complexes.2 It has been found that the exchange split 
cluster energy levels are generally given by the total spin form 
of the spin-coupling Hamiltonian 

/ / e x = - 2 r JabSaSb U ) 
atom 
pairs 
a.b 

where Jab is the exchange coupling constant for the intracluster 
interaction between metal atoms at sites a and b with total spin 
operators S a and S*. Comparison of experimental suscepti­
bility vs. temperature measurements with the susceptibility 
equation derived from eq 1 enables the Jab to be evaluated. 
Exchange coupling constants for a large number of cluster 
complexes have been determined in this way. 

In contrast to the profuse experimental measurements of 
cluster exchange constants, attempts at theoretical calculation 
of these quantities have been very limited in number. The 
problem is difficult because it requires the calculation of small 
energy differences (<1000 c m - 1 ) in large many-electron 
systems, and because it is necessary to take account of electron 
correlation. 

All of the calculations of Jab that have so far been reported 
are semiempirical in nature. Most of these are based on An­
derson's theory3,4 and the configuration interaction method 
of Keffer and Oguchi5 and Huang and Orbach,6,7 and make 
heavy use of experimental data and free-atom wave functions 
for estimating the many integrals involved. More recently,8 

a calculation based on Heitler-London wave functions in­
cluding admixture of ionic states led to an expression for dimer 
exchange constants in terms of one-electron orbital splittings 
and overlaps. With orbital energies obtained from extended 
Hiickel calculations, it proved possible to understand quali­
tatively the changes in Jab with structure and substituents for 
a variety of Cu2 + dimers; however, calculated values of Jab 
were not reported. A new model for estimating dimer exchange 
constants was recently proposed by Kahn and Briat.9 ' ' These 
authors used Heitler-London wave functions without admixed 
ionic states to obtain a relation between Jab and one-electron 
orbital splittings and overlaps. In the case of [Cr2OiO]'4_ and 
[Cr2CIg]3- , Kahn and Briat obtained the correct numerical 
magnitude for Jak using orbital energies calculated with ex­
tended Hiickel theory. 

With the advent of the X a - S W method'2-'3 it has become 
possible to attempt completely nonempirical, self-consistent-

field calculations of cluster exchange constants. That such 
calculations might give useful results is suggested by the fol­
lowing considerations: (a) Inherent in the Xa method is an 
approximate description of electron correlation.14"16 (b) 
Spin-unrestricted calculations can be carried out.17 (c) The 
transition-state method18 may be used to obtain the energy 
separation between spin states of a system in terms of orbital 
energy differences. These energy differences may then be re­
lated to the exchange coupling constant.19 

Analysis of the problem reveals that the relation between 
Jab and spin state splittings calculated by the Xa method is 
quite approximate. This approximation is the best that can be 
achieved if the calculations are to be carried out entirely within 
the framework of the S C F - X a - S W method as implemented 
in the standard programs. To determine if reasonable values 
for cluster exchange coupling constants can be obtained in this 
way, it is necessary to carry out calculations for appropriate 
systems. In this paper I report results for the complex 
[M02CI9]3-. This system was chosen because it exhibits sig­
nificantly different Mo-Mo distances in its potassium and 

•cesium salts, and the difference is reflected in the observed 
exchange coupling constants. Thus, for Cs3Mo2CIg20"22 

rf(Mo-Mo) = 2.655 A and Jab (obsd) = -421 cm"1, while for 
K3Mo2Cl9

21-23 (/(Mo-Mo) = 2.53 A and Jab (obsd) = -556 
c m - 1 . By calculating Jab for Mo2CIg3- with structural pa­
rameters for both the cesium and potassium salts, a test is 
obtained of the ability of the theory to account for the effects 
of small structural changes on exchange coupling. The calcu­
lated values of Jab are of the correct sign and order of magni­
tude, and qualitatively reproduce the difference between the 
Cs and K salts. The calculations also provide an illuminating 
description of the exchange coupling in M02CI93-, and reveal 
the existence of weak metal-metal bonding quite distinct from 
the coupling of the magnetic electrons. While these are notable 
accomplishments for a first principles theory and indicate that 
the proposed method is useful, its inherently approximate 
nature must be borne in mind. Further tests of the method on 
other clusters are highly desirable. 

Theory 

The total spin Hamiltonian eq 1 for a dimer leads to a simple 
relation between Jab and spin state total energy differences: 

Jab = S2W+I)-S1W+!) [E{S{) ~ E(Sl')] 

(2) 
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where S i ' and S2' are allowed values of the total dimer spin 
(S 2 ' > S1 ' ): S1 ' , S 2 ' = (S0 + Sb), (S0 +Sb-I)... -\Sa -
Sb\- It is the objective of this work to test the possibility of 
evaluating Jab by using the standard SCF-Xa-SW programs 
to calculate the spin state total energy difference in eq 2. In 
order to understand the limitations of such calculations it is 
necessary to review part of the derivation of eq 1. 

It can be shown that, for the case of orbital singlet magnetic 
ions at sites a and b, the general expression for the exchange 
operator reduces to24 

U 
Sa-Si (3) 

in which / andy run over all magnetic (i.e., singly occupied) 
orbitals <$„,- and ^ and where sa and % are spin half operators 
at sites a and b, respectively. </y is the exchange coupling 
constant for the interaction between magnetic orbitals <J>a, and 
$bj. which are localized on the centers a and b, respectively. 
In order to transform eq 3 to the total spin form, it is necessary, 
to invoke the Hund's rule restriction which constrains the 
magnetic electrons on the single ions to have parallel spins. If 
the single-ion total spin is S, then within the \S, M\ mani­
fold 

s =-U 
a 2S a 

Sb = 2SSb 

Sfl'S* — „2 ^a'^fe 

(4) 

Making the definition 

JiJ Us2J"'-' (5) 

we can write 

2Z, — 2djjSa-Sb = Y. ~ 2JijSa-Sb = — 2JabSa-Sb (6) 
U U 

We may now examine the relationship between the dimer 
spin states of eq 2 and the dimer spin states which can be rep­
resented within the framework of the standard Xa method. 
First of all note that in the spin polarized Xa description the 
lowest energy electron configuration with all magnetic elec­
trons in spin up molecular orbitals corresponds uniquely to the 
S ' = maximum state, while the lowest energy configuration 
with V2 of the magnetic electrons in spin up and V2 in spin down 
MOs corresponds uniquely to the S ' = O state. On the other 
hand, for an S ' value intermediate between O and the maxi­
mum, more than one electron configuration can always be 
written. Hence it is only for S ' = O and S ' = maximum that we 
can correlate a spin state of eq 2 with an Xa configuration 
state. Making this correlation we write 

J, 
1 

ab 
^ maxW max ' >-) 

[(E(S'= O))Xa 

- < £ ( S ' = S ' m a x ) ) X a ] (7) 

Now recall the fact, emphasized by Slater14 and noted by 
others,15-16 that the Xa method includes the effect of electronic 
correlation to a sufficient degree of approximation that it 
correctly describes the limiting behavior of a diatomic molecule 
as the interatomic distance is increased. For a weakly coupled 
dimer we may therefore expect that the Xa configuration state 
with S ' = maximum corresponds with a state in which the 
single ions have their magnetic electrons entirely in localized 
spin up orbitals. The Xa configuration state with S ' = O, on 
the other hand, corresponds to a state in which the single ions 
each have their magnetic electrons equally distributed among 

localized spin-up and spin-down orbitals (effective atomic spin 
S = O). We see then that, while (E(S' = maximum))x„ should 
be a good approximation to the energy of the S ' = maximum 
state of eq 2, (E(S' = 0 ) )x a is a poor approximation for the 
energy of the S ' = 0 state. Equation 7 is therefore a drastic 
approximation, but it is the best that can be done within the 
framework of the standard Xa method. 

In order to implement eq 7 it is necessary to decide upon a 
method for calculating the Xa total energy difference. There 
are three possible approaches: (1) separate calculation of (E(S' 
- 0) )x a and (E(S' = S'max))xa and taking the difference; (2) 
the generalized transition state method;26 (3) incremental 
single electron transition state calculations.26 Method (1) is 
unsatisfactory for a system such as [ M O 2 C I Q ] 3 - because of the 
difficulty of accurately determining by direct calculation small 
differences between numerically very large total energies. 
Methods (2) and (3) overcome this difficulty by relating the 
total energy difference to a sum of Xa orbital energies. 

For a multielectron excitation of a system with M levels, the 
generalized transition state approximation is26 

(EF)xa-(E])xa= Y. A«,e0; + EQX 
/= 1 Ci0 

(8) 

where the €0; are the Xa orbital energies in the transition state, 
defined as the state with occupation numbers 

"0; = - ( « I / + « F / ) (9) 

exchange correlation parameter 

«o = - ( « ! + « F ) (10) 

and Xa exchange energy EQX. An,- is the change in occupation 
number in the /th orbital on going from the initial to the final 
state: 

An,- = nF,- - tin (11) 

while Aa is the change in the exchange correlation param­
eter: 

Aa = aF — oi\ (12) 

In the present application, the change from the initial to the 
final state consists in moving the V2S'maX highest energy 
spin-down electrons into the same number of empty lowest 
spin-up orbitals. Since the metal atoms are only weakly in­
teracting the overall electronic structure in the initial and final 
states must be similar. It will therefore be assumed that Aa 
= 0 so that eq 8 reduces to 

M 
( £ » X a - <£l>X« = Y. A«/6o/ (13) 

The generalized transition state form of eq 7 may now be 
written as 

where 

1 M 
Jab * T'—7V' T7\ ^ A"'€o/ 

J maxv° max ' 1I (=1 

An1- = n((S' = 0) - m(S' = max) 

(14) 

(15) 

The incremental method for calculating the Xa total energy 
difference in eq 7 consists of breaking the multielectron exci­
tation up into a sum of single-electron excitations and calcu­
lating the energy of each of these with the Slater transition 
state method. Recent atomic Xa calculations2611 have shown 
the incremental method to be, in general, a more accurate 
procedure for calculating the X a total energy change of a 
multielectron excitation than is the generalized transition state 
method. However, when the initial and final orbitals for the 
excitation are similar, as they are in the calculation of Jab, the 
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Figure 1. Coordinate axes, geometry, and atom labeling scheme for 
Mo2Cl9

3- (Du). 

Table I. Mo2Cl9
3- Bond Lengths (A) and Angles (deg) in the Cs+ 

and K+ Salts 

d Mo-Mo 
d Mo-Cl(term.) 
d Mo-Cl (bridge) 
ZCl1-Mo-Cl1 
zClbr-Mo-Clbr 

ZMo-Clbr-Mo 

Cs3Mo2Cl9'
1 

2.655 
2.384 
2.487 

91.0 
94.2 
64.5 

K3Mo2Cl9* 

2.53 
2.39 
2.51 

90.5 
97 
60.5 

From ref 22. ' From ref 23. 

two methods should be comparable in accuracy. In the present 
work on Mo2Cl9

3- both methods were used and it was found 
that both give very similar results for Jab- This is an important 
finding since it indicates that the generalized transition state 
method, which requires considerably less computation than 
the incremental method, may be used for implementing eq 
7. 

Procedure for Calculations on [IV^Clg]3-

SCF-Xa-SW calculations were carried out in double pre­
cision on a Honeywell 6000 computer, using current versions 
of the programs written originally by K. H. Johnson and F. C. 
Smith. 

Figure 1 shows the coordinate axes and atom numbering 
scheme for Mo2CIg3- (point group symmetry D-U1)- Table I 
summarizes the important bond lengths and angles as found 
in the cesium and potassium salts. Coordinates in atomic units 
(1 bohr = 0.529 17 A) were derived from the values in Table 
I and are summarized in Table II. A third set of coordinates 
in Table II corresponds to the Mo-Mo distance in K3Mo2Cl9, 
but with the Mo-Cl (bridge) distance shortened by 0.06 A; 
these values were used in a calculation to evaluate the contri­
bution of Cl bridge orbitals to the exchange coupling. Table 
II also contains the sphere radii used in the calculations. 
Overlapping atomic sphere radii were obtained by scaling the 
atomic number radii27 so as to optimize the ground-state virial 
ratio at self-consistency. The outer sphere surrounding the 
molecule was centered on the origin and assigned a radius 
which made it tangent to the terminal Cl atomic spheres when 
the radii were scaled to give terminal C! and Mo spheres which 
touched. This gave an overlapping outer sphere for the actual 
atomic sphere radii.27 A Watson sphere28 with radius equal 

-0.16 
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Figure 2. SCF 5" = O state one-electron valence energy levels of Mo2Cl9
3-

with predominantly Mo 4d or Clbr 3p character. The arrows point to the 
highest occupied levels. The numbers to the right of each level are the 
relative (%) amounts of charge within the 2Mo and 3Clbr spheres, re­
spectively; they differ from the values in Table III in being normalized so 
that % 2Mo + % 3Clbr + % 6Clt = 100. The energy levels from the 
KjMo2Cl9 and the "short Mo-CIb1" K3Mo2Cl9 calculations were uni­
formly scaled, by addition of 0.034 Ry in the first case and 0.014 Ry in the 
second, in order to bring the Cl1 3s nonbonding levels into coincidence with 
the Cs3Mo2Cl9 values. 

to the mean Cs+ or K+ distance from the dimer origin,29 and 
bearing a +3 charge, was used to simulate the electrostatic 
interaction of the dimer with its surrounding crystal lattice. 
a exchange-correlation parameters for Mo and Cl were from 
Schwarz's tables30'31 (aHF(Mo) = 0.703 41, « H F ( C 1 ) = 
0.723 25). In the extramolecular and intersphere regions a was 
taken as an average of a(Mo) and a(CI) weighted by the 
number of valence electrons in the atoms (a(OUT) = a(INT) 
= 0.716 22). 

The highest order spherical harmonics used to expand the 
wave functions were / = 4 in the extramolecular region, / = 2 
in the Mo spheres, and / = 1 in the Cl spheres. SCF calcula­
tions of the S' = O ground state were spin restricted and con­
verged to ±0.0005 Ry or better for each level. Core levels were 
not frozen at any point. All transition-state calculations were 
spin polarized and were iterated until the levels of interest had 
convered to ±0.0005 Ry or better. In determining Jab by the 
generalized transition state method, using eq 14, a value was 
calculated for each of five to ten iterations preceding the final 
iteration. Plots of the J0/, values against AJab, the change from 
one iteration to the next, were linear, and least-squares ex­
trapolation to i\Jab - 0 gave the final result. A similar pro­
cedure was used to calculate Jab by the incremental transition 
state method, except that in this case it was the single electron 



114 Journal of the American Chemical Society / 102:1 / January 2, 1980 

Table II. Atomic Coordinates and Sphere Radii for Mo2Cl9
3- (bohrs) 

salt 

CS3M02CI9 

K3Mo2Cl9 

"K3Mo2Cl9" 
with Mo-Clbr 

shortened to 2.45 A* 

region 

Mo(I) 
Mo(2) 
Cl(I) 
Cl(2) 
Cl(3) 
Cl(4) 
Cl(5) 
Cl(6) 
Cl(7) 
Cl(S) 
Cl(9) 
OUT 
Watson 
Mo(I) 
Mo(2) 
Cl(I) 
Cl(2) 
Cl(3) 
Cl(4) 
Cl(5) 
Cl(6) 
Cl(I) 
Cl(S) 
Cl(9) 
OUT 
Watson 
Mo(I) 
Mo(2) 
Cl(I) 
Cl(2) 
Cl(3) 
Cl(4) 
Cl(5) 
Cl(6) 
Cl(7) 
Cl(S) 
Cl(9) 
OUT 
Watson 

X 

O 
O 

-3.7120 
1.8560 
1.8560 

-3.7120 
1.8560 
1.8560 

-1.9872 
3.9743 

-1.9872 
0 
0 
0 
0 

-3.7038 
1.8519 
1.8519 

-3.7038 
1.8519 
1.8519 

-2.0642 
4.0968 

-2.0642 
0 
0 
0 
0 

-3.7120 
1.8560 
1.8560 

-3.7120 
1.8560 
1.8560 

-1.9872 
3.9743 

-1.9872 
0 
0 

>' 

0 
0 
0 

-3.2147 
3.2147 
0 

-3.2147 
3.2147 

-3.4418 
0 
3.4418 
0 
0 
0 
0 
0 

-3.2076 
3.2076 
0 

-3.2076 
3.2076 

-3.5388 
0 
3.5388 
0 
0 
0 
0 
0 

-3.2147 
3.2147 
0 

-3.2147 
3.2147 

-3.4418 
0 
3.4418 
0 
0 

z 

2.508 65 
-2.508 65 

5.0617 
5.0617 
5.0617 

-5.0617 
-5.0617 
-5.0617 

0 
0 
0 
0 
0 
2.3905 

-2.3905 
4.9753 
4.9753 
4.9753 

-4.9753 
-4.9753 
-4.9753 

0 
0 
0 
0 
0 
2.3905 

-2.3905 
4.9436 
4.9436 
4.9436 

-4.9436 
-4.9436 
-4.9436 

0 
0 
0 
0 
0 

R" 

2.573 68 
2.573 68 
2.505 23 
2.505 23 
2.505 23 
2.505 23 
2.505 23 
2.505 23 
2.429 55 
2.429 55 
2.429 55 
8.499 16 
7.638 4 
2.553 12 
2.553 12 
2.488 55 
2.488 55 
2.488 55 
2.488 55 
2.488 55 
2.488 55 
2.423 17 
2.423 17 
2.423 17 
8.431 86 
7.325 6 
2.568 28 
2.568 28 
2.524 83 
2.524 83 
2.524 83 
2.524 83 
2.524 83 
2.524 83 
2.430 77 
2.430 77 
2.430 77 
8.415 49 
7.325 6 

" Cs3Mo2Cl9: R = 0.8724 (atomic no. radii). K3Mo2Cl9: R = 0.8659 (atomic no. radii). "K3Mo2Cl9" with short Mo-Clbr: R = 0.879 1 
(atomic no. radii). * Same x and y coordinates as Cs3Mo2Cl9, but z coordinates changed by axial compression to d Mo-Mo = 2.53 A. 

<.7> [If/ V . l / 

^b 21 a! a 

0 12 3 i 3210 I 2 (CU) 2 1 

.jsr^m 
Figure 3. Wave function contour maps of the Mo2Cl9

3" 5" = 0 state 21a/ and 18a2" orbitals in the .vr plane (Cs salt calculation). Solid and broken 
lines denote contours of opposite sign having magnitudes indicated by the numerical labels: 0. 1.2,3, 
respectively. 

•• 0,0.04,0.06.0.08,0.10.0.13 (electrons/bohr3)'/2, 

excitation energies, into which the total multielectron excita­
tion was decomposed, which were extrapolated to zero change 
from one iteration to the next. 

Results 
The M02CI93- S' = 0 state valence energy levels, charge 

distributions, and orbital descriptions from the CS3M02CI9 
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Table III. Mo2Cl9
3- S' = 0 State Valence Energy Levels, Charge Distributions, and Orbital Descriptions from the Cs3Mo2CIs Calculation 

level" 

24e' 
22a / 
23e' 
18e" 
18a2" 

17e" 

22e' 

2Ia1 ' 

4a2 ' 
17a2" 
21e' 
16e" 
20a,' 
2Oe' 
2a," 
3 a / 

15e" 
19e' 
14e" 
18e' 
19a,' 
16a2" 
13e" 
15a2' 
18ai' 
17e' 
16e' 
17ai' 
15e' 
12e" 
14a2" 
16a,' 

energy, 
Ry 

-0.085 
-0.124 
-0.180 
-0 .209 
-0.278 

-0.384 

-0.403 

-0.485 

-0.512 
-0.550 
-0.563 
-0.593 
-0.617 
-0.622 
-0.744 
-0.748 
-0.759 
-0.771 
-0.781 
-0.782 
-0.793 
-0.803 
-0.824 
-0.830 
-0.835 
-0.837 
-1.392 
-1.394 
-1.652 
-1.652 
-1.661 
-1.663 

2Mo 

3d 

1 
54 
68 
78 

81 

64 

69 

0 
9 

16 
17 
24 
18 
0 
0 
1 
4 
2 

12 
9 
5 

17 
8 
9 

21 
3 
2 
2 
2 
2 
2 

charge 
6Clt 

2d 

3 
8 

12 
2 

2 

0 

7 

1 
13 
9 
2 
6 

13 
87 
86 
84 
76 
21 
66 
77 
74 
75 
77 
75 
68 

0 
1 

93 
93 
92 
91 

distribution 
3Clbr 

7d 

3 
16 
8 

10 

7 

21 

13 

78 
61 
56 
60 
53 
51 

0 
1 
0 
3 

57 
6 
2 
3 
0 
2 
2 
4 

89 
88 

0 
0 
0 
0 

,%* 
INT 

53rf 

59 
17 
10 
10 

10 

14 

11 

20 
16 
18 
20 
16 
17 
12 
14 
14 
16 
18 
16 
13 
16 
5 

11 
13 
5 
8 
9 
4 
4 
6 
6 

OUT 

35rf 

35 
5 
2 
0 

0 

0 

0 

0 
1 
0 
0 
0 
0 
1 
0 
1 
0 
1 
0 
2 
2 
2 
2 
1 
2 
0 
0 
1 
1 
1 
1 

major Mo 
spherical 

harmonics^ 

d.v7,>_-. d . v i - r 2 v l . 

d.v.-,r_-. dJC2_>.2..vl. 
d-2 

&x2-y2.xy, d.iz.y: 

dx2-y2.xy. d-vr.r--

d.-2 

dx2-y2,xy 

dx2-y2.xy 
d.-2, p:, s 

d.x.-.r.-, P.v.r 

Qyz.yz 

O.vzj'Z' ^x2~y2,xyPx,y 

S, P 2 

S 

&xz,yz> d*2— y1:xy 

description 

Mo-Clbr antibonding 
Mo-Cl antibonding 
cr-Mo-Mo antibonding; Mo, Cl 

nonbonding 
TT-MO-MO antibonding; Mo, Cl 

nonbonding 
7T-Mo-Mo bonding; Mo, Cl 

nonbonding 
(T-Mo-Mo bonding; Mo, Cl 

nonbonding 
Clbr 3p nonbonding 
Clbr 3p nonbonding 
Mo-Clbr bonding 
Mo-Clbr bonding 
Mo-Clbr and Mo-Mo bonding 
Mo-Clbr bonding 
Cl, 3p nonbonding 
Cl, 3p nonbonding 
Cl, 3p nonbonding 
Cl, 3p nonbonding 
Clbr and Cl1 3p nonbonding 
Mo-Cl1 bonding 
Cl1 3p nonbonding 
Clt 3p nonbonding 
Mo-Cl, bonding 
Mo-Cl, bonding 
Mo-Cl t bonding 
Mo-Cl, bonding 
Clbr 3s nonbonding 
Clbr 3s nonbonding 
Clt 3s nonbonding 
Cl, 3s nonbonding 
Cl, 3s nonbonding 
Clt 3s nonbonding 

" The highest occupied level is 22e'. b Percentage of the total population of a given level located within the combined molybdenum (2Mo), 
combined terminal chlorine (6Clt), combined bridging chlorine (3Clbr), intersphere (INT), and extramolecular (OUT) regions. The total 
charge distribution in electrons is 81.80 in 2Mo, 97.77 in 6CIt, 50.05 in 3 Clbr, 9.76 in INT, and 0.61 in OUT. c Spherical-harmonic basis functions 
contributing more than 10% of the Mo charge, in order of decreasing importance. d From the K3M02CI9 calculation. 

Figure 4. Wave function contour maps of the M02CI93- S' = 0 state 22e' and 17e" orbitals in the xz plane (Cs salt calculation) 
and sign convention as in Figure 3. 

Contour magnitudes 

calculation are summarized in Table III. Details of the 
K3M02CI9 5" = 0 state calculations are not tabulated, but 
levels with predominantly Mo 4d or Clbr 3p character from all 
three calculations are plotted in Figure 2. Figures 3 and 4 are 

contour maps of the Mo-Mo bonding and antibonding MOs 
with predominantly (64-81%) Mo character. Figure 5 shows 
contours for the 2Oa/ Mo-CIbn, Mo-Mo bonding orbital. 
These maps were each generated from the numerical values 
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Figure 5. Wave function contour maps of the M02CI93 S' = 0 state 20a 1' 
and sign convention as in Figure 3. 

Table IV. Calculated and Observed Exchange Coupling Constants 
for Mo2CI9

3" 

system 

CSiMo2Cl9 
K3Mo2Cl9 
"short Mo-Clbr 

K3Mo2CI," 

calcd J1,),, cm-1 

generalized incremental 
tr state method tr state method 

-355 
-1268 -1241 

-1266 

obsd J1,),, cm ' 

-421° 
-556* 

Reference 20. ' Reference 21. 

of the wave functions at 6561 grid points within a 16 X 16 
bohr2 area centered on the origin. Table IV is a summary of 
the calculated exchange coupling constants. The final virial 
ratios for the three S' = 0 calculations were as follows: 
Cs3Mo2Cl9, 0.999 995 7; K3Mo2Cl9, 0.999 990 3; "short 
Mo-Clbr K3Mo2Cl9," 1.000 010. 

Discussion 

Table III provides a picture of the S' = 0 state electronic 
structure of Mo2Cl9

3- in Cs3Mo2Cl9; essentially the same 
overall picture is obtained from the K3Mo2Cl9 calculations. 
The valence energy levels of Mo2Cl9

3- can be separated more 
or less clearly into eight groups. In order of increasing energy 
these are (1) six nearly pure Cl 3s nonbonding levels in the 
range -1.66 to -1.39 Ry; (2) four levels in the range -0.84 
to -0.82 Ry which are the main Mo-terminal Cl bonding or-
bitals; (3) a group of eight levels in the range -0.80 to -0.74 
Ry, of which six are predominantly terminal Cl 3p nonbonding 
in character while one has significant Mo-Cl1 bonding char­
acter and one is mostly nonbonding Clbr 3p; (4) four levels 
between -0.62 and -0.56 Ry which are the major Mo-
bridging Cl bonding orbitals (one of these, 20a 1', also has 
significant c-Mo-Mo bonding character); (5) a pair of pre­
dominantly Clbr 3p nonbonding levels between —0.55 and 
-0.51 Ry; (6) four levels (21a/, 22e', 17e",and 18a2") with 
64-81% Mo 4d character in the range -0.48 to -0.28 Ry. 
These are the MOs which mediate the weak interaction be­
tween the single-ion magnetic electrons. As may be seen from 
the contour maps in Figure 3, level 21ai corresponds to a 
cr-Mo-Mo bonding orbital formed by interaction of the es­
sentially 4dz2 single-ion magnetic orbitals. Level 18a2" is its 
antibonding counterpart and is unoccupied in the 5" = 0 state. 
Similarly Figure 4 shows that level 22e' (the HOMO) corre­
sponds to a very weakly bonding 7T-Mo-Mo orbital, one com­
ponent of which is formed by interaction of hybrid dxz, dx2-yi 
single-ion magnetic orbitals. Level 17e" is its antibonding 
counterpart and is unoccupied in the S' = 0 state. (7) Above 

)f the American Chemical Society / 102:1 / January 2, 1980 

•bital in the xz plane for CS3M02CI9 and K3M02CI9. Contour magnitudes 

the Mo-Mo antibonding orbitals are a pair of Mo-Cl anti-
bonding orbitals (18e" and 23e') with 54-68% Mo character. 
(8) Finally, at still higher energies levels 22a/ and 24e' have 
only 7-12% of their charge localized within the atomic spheres 
and are diffuse Rydberg-state orbitals. 

The increased Mo-Mo interaction in K3Mo2Cl9, brought 
about by the shorter Mo-Mo distance, is reflected in the energy 
level diagram of Figure 2. The major change from Cs3Mo2Cl9 
to K3Mo2Cl9 is the increased bonding-antibonding splitting 
between levels 21a/ and 18a2" and between 22e' and 17e". In 
fact, in the K3Mo2Cl9 diagram 21a/ falls below the Clbr 3p 
nonbonding 4a2' level. Another difference between the Cs and 
K salts which is evident in Figure 2 is a slight weakening of the 
Mo-Clbr bonding interaction. This is shown by the increased 
energy of the Mo-CIb7 bonding orbitals in K3Mo2Cl9 while the 
Mo-Clbr antibonding orbital (23e') is lowered in energy. As­
sociated with this is an increased Mo sphere and decreased Clbr 
sphere charge in the bridge bonding orbitals of the potassium 
salt. Figure 5 shows clearly the greater Mo-Clbr overlap in the 
20a/ bridge bonding orbital of the cesium as compared to the 
potassium salt. Also to be noted, for later discussion, is the 
somewhat increased Clbr sphere charge, at the expense of the 
Mo sphere, in the Mo-Mo bonding orbitals of the potassium 
salt. Thus in orbital 22e' there is a 4% increase in the Clbr 
sphere charge and a 4% decrease in the Mo sphere while in the 
21a/ level there is a 6% charge transfer from the Mo to the Clbr 
sphere. 

Figure 5, in addition to showing the Mo-Clbr overlap in 
orbital 20a/, reveals that this orbital has considerable Mo-Mo 
bonding character. In fact orbital 2Oa1' has the largest direct 
Mo-Mo overlap of any orbital in the cluster. Since this inter­
action is not canceled by an equivalent antibonding interaction 
in any of the occupied orbitals, we may conclude that there is 
present in Mo2Cl9

3" significant net Mo-Mo bonding quite 
distinct from the weak coupling of the magnetic orbitals. 
Similar weak direct Fe-Fe bonding has recently been shown 
to be present in Fe2S2(SH)42-, where it is concentrated in a 
mainly Fe-(bridging S) orbital.32 

In order to calculate Jab via eq 7 it is necessary to determine 
the Xa total energy difference between the S' = O state and 
the S' = 3 state with electron configuration . . .(22ef)2-
(21a/t) l(17e"t)2(18a2"t)1. Even in the case of K3Mo2Cl9, 
where level 21a/ lies below level 4a2' in the S' = O state, the 
latter configuration gives the lowest energy S' = 3 state, being 
0.0646 Ry below the . . .(22e't)2(4a2

,t) ,(17e//t)2(18a2"t)1 

configuration. The transition-state configuration for calcu­
lating (E(S' = 0)>x„ ~ (E(S' - 3)>Xn with eq 14 is 
...(21a/t) l(21a/|)a5(22e't)2(17e"t)1(22e'|) l(18a2"t)0-5. 
In the incremental transition state calculation, the total energy 
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difference was calculated in three parts using single electron 
transition states which corresponded to successively flipping 
spins 22e'l — 17e"t,22e'j — 17e"t, and 21a,'j — 18a2"f. 
As may be seen in Table IV, the two methods of calculation 
gave close agreement in the K3M02CI9 case; other calculations 
were therefore carried out using only the generalized transition 
state method. The calculated value of Jab for CS3M02CI9 is in 
quite good agreement with experiment, being only 16% too 
small in magnitude. However, Jab (calcd) for K3M02CI9 is 
128% too large in magnitude. The calculated increase in \Jab\ 
from the cesium to the potassium salt is thus much larger than 
observed (913 vs. 135 cm-1).33 

A question which often arises in discussions of exchange 
coupling is: What is the relative importance of superexchange 
and of direct metal-metal interaction in the coupling mecha­
nism? According to Anderson's theory superexchange occurs 
when metal atom magnetic orbitals are delocalized by overlap 
with bridging ligand atom orbitals so that the interaction be­
tween spins on different metal atoms is enhanced. The question 
of superexchange vs. direct metal-metal interaction in any 
given case is then simply a question of the extent to which 
overlap of single-ion magnetic orbitals is determined by ligand 
atom contributions. In the case of Mo2Cl9

3- we have seen that 
the structural change from the cesium to the potassium salt 
causes some redistribution of charge between the Mo and Clbr 
spheres in the Mo-Clt,r and in the Mo-Mo bonding orbitals. 
To the extent that superexchange is significant in Mo2Cl9

3-, 
the charge redistribution may be contributing to the change 
in Jab' The question may be addressed in two ways. First of all 
we see from Figures 2-4 that, although the Mo-Mo bonding 
orbitals place significant amounts of charge within the Clbr 
sphere, this charge is nonbonding and does not make any sig­
nificant contribution to the Mo-Mo overlap in either the 22e' 
or 21a/ orbitals. Secondly, by carrying out a calculation for 
an Mo2CIg3- system with d(Mo-Mo) the same as in 
K3Mo2Cl9 but with rf(Mo-Clbr) contracted to 2.45 A, it is 
found (Figure 2) that the charge distribution in the Mo-Clbr 
and in the Mo-Mo bonding orbitals is nearly the same as for 
the Cs3Mo2Cl9 case, but the calculated Jab is changed only 
slightly from the K3Mo2Cl9 value. The Xa analysis therefore 
leads to the conclusion that the exchange coupling in Mo2Cl9

3-

is a case of pure metal-metal interaction with no superex­
change. 

The results in this paper indicate that the standard SCF-
Xa-SW method can be useful in the study of cluster exchange 
coupling. There appear to be two avenues open for improving 
the calculations. The first would require an improved Xa de­
scription of the S' = O state. A theory which may accomplish 
this is the Xa-VB method being developed by Noodleman and 
Norman.34 It will be of great interest to see what success this 
theory has in calculating exchange coupling constants. Another 

approach, which is now being investigated, is to circumvent the 
problem of the poor description of the S' = O state by calcu­
lating Jab entirely within the S' = maximum state. This can 
be accomplished by using a relation of the type recently derived 
by Hay et al.8 or Kahn and Briat.10 

References and Notes 

(1) Part 11: A. P. Ginsberg, M. E. Lines, K. D. Karlin, S. J. Lippard, and F. J. 
DiSalvo, J. Am. Chem. Soc, 98, 6958 (1976). 

(2) For reviews see (a) R. L. Martin in "New Pathways in Inorganic Chemistry", 
E. A. V. Ebsworth, A, G. Maddock, and A. G. Sharpe, Eds., Cambridge 
University Press, New York, 1968. Chapter 9; (b) A. P. Ginsberg, lnorg. 
Chim. Acta Rev., 5, 45 (1971); (c) D. J. Hodgson, Prog, lnorg. Chem., 19, 
173(1975). 

(3) P. W. Anderson, Phys. Rev., 115, 2 (1959). 
(4) P. W. Anderson, Solid State Phys., 14, 99-214(1963). 
(5) F. Keffer and T. Oguchi, Phys. Rev., 115, 1428 (1959). 
(6) N. L. Huang and R. Orbach, Phys. Rev., 154, 487 (1967); N. L. Huang, ibid., 

157,378(1967). 
(7) C. G. Barraclough and R. W. Brookes, J. Chem. Soc, Faraday Trans. 2, 

70, 1364(1974). 
(8) P. J. Hay, J. C. Thibeault, and R. Hoffman, J. Am. Chem. Soc, 97, 4884 

(1975). 
(9) O. Kahn and B. Briat, J. Chem. Soc, Faraday Trans. 2, 72, 268 (1976). 

(10) O. Kahn and B. Briat, J. Chem. Soc, Faraday Trans. 2, 72, 1441 
(1976). 

(11) O. Kahn, B. Briat, and J. GaIy, J. Chem. Soc, Dalton Trans., 1453 
(1977). 

(12) K. H. Johnson, Annu. Rev. Phys. Chem., 26, 39 (1975). 
(13) J. C. Slater, "The Self-Consistent Field for Molecules and Solids: Quantum 

Theory of Molecules and Solids", Vol. 4, McGraw-Hill, New York, 1974. 
(14) Reference 13, pp 83-86. 
(15) R. P. Messmer and D. R. Salahub, J. Chem. Phys., 65, 779 (1976). 
(16) F. A. Cotton and G. C. Stanley, lnorg. Chem., 16, 2668 (1977). 
(17) Reference 13, Chapter 3. 
(18) Reference 13, pp 7-8 and 51-55. 
(19) The calculation of exchange constants in terms of the splittings between 

cluster spin states, as carried out in this work, differs from the method 
proposed by Slater for calculating the exchange constant of a ferromagnetic 
crystal by the Xa-SW method (ref 13, pp 191-194). 

(20) I. E. Grey and P. W. Smith, Aust. J. Chem., 22, 121 (1969). 
(21) I. E. Grey and P. W. Smith, Aust. J. Chem., 24, 73 (1971). 
(22) R. Saillant, R. B. Jackson, W. E. Streib, K. Folting, and R. A. D. Wentworth, 

lnorg. Chem., 10, 1453(1971). 
(23) I. E. Grey and P. W. Smith, Aust. J. Chem., 22, 1627 (1969). 
(24) The general theory is in ref 3 and 4. Reference 25 gives the most general 

form of the exchange operator. For a concise derivation of eq 3 from the 
general expression see the Appendix in ref 1. 

(25) F. Hartmann-Boutron, J. Phys. (Paris), 29, 212 (1968). 
(26) (a) A. R. Williams, R. A. de Groot, and C. B. Sommers, J. Chem. Phys., 63, 

628 (1975); (b) A. P. Ginsberg, to be published. 
(27) J. G. Norman, Jr., MoI. Phys., 31, 1191 (1976). 
(28) R. E. Watson, Phys. Rev., 111, 1108(1958). 
(29) Cs3Mo2CI9 has two Cs+ at 3.9392 and one at 4.2476 A from the dimer 

origin, In K3Mo2CIg the corresponding distances are 3.7622 A for two K+ 

and 4.1050 A for one. 
(30) K. Schwarz, Phys. Rev. B, 5, 2466 (1972). 
(31) K. Schwarz, Theor. Chim. Acta, 34, 225 (1974). 
(32) J. G. Norman, B. J. Kalbacher, and S. C. Jackels J. Chem. Soc, Chem. 

Commun., 1027(1978). 
(33) The sensitivity of the Jab calculation to the choice of atomic sphere radii 

was investigated. It was found that a 2% decrease in the sphere radius 
scale factor results in a ca. 100-cm-1 decrease in the magnitude of J and 
a ca. 75-ppm increase in the virial ratio. The effect of the Watson sphere 
radius on Jab (calcd) was also investigated. Choosing the Watson sphere 
radius as described in the text or taking it to have the same radius as the 
outer sphere both give essentially the same result for JBb (calcd). 

(34) L. Noodleman and J. G. Norman Jr., J. Chem. Phys., 70, 4903 (1979). 


